
Andre Alefeld

Software Engineering

Working in the Grid Engine
Open Source Project (Part I)

We are talking about...

� 373 source files in C

� 448 header files

� 443 source and header files of 3rd party
code

� 5 daemons and 19 client cmds.

� A software that runs on most Unix
systems

Agenda

� SourceCast a collaborative
environment

� Code Organization and coding style

� Building Grid Engine from scratch

SourceCast

SourceCast: wide area collaborative
software development environment

� allows distributed development

� ease of collaboration, webbased interface

� set of common tools

� central information and feedback exchange

� central administration

� extensibility

SourceCast

� set up and advance projects easily

� centralize project information,
avoiding synchronization problems

� location independent access

� changes immediately visible

� focus on SW development instead of
system maintenance

Web-based Project Environment

SourceCast

� CVS ensures accurate revision
information

� exchange among any # of developers

� color-coded version tracking/diffing

� code/documentation/webcontent use
same procedures

� revisions perfected locally and
published in master repository

Revision Control

SourceCast

� monitor issue progress, better QA

� automatic assignment of tasks to the
right people

� organize information around an issue

� metrics/report generation

Issue Tracking

SourceCast

� mail archives help new developers

� open forum for discussion and voting

� enhance collaboration

� mailing list search can give
hints/contacts on a special topic

Mailing Lists

SourceCast

� Access control via role based
permissions

� easily maintainable and customizable
development environment

� administration from anywhere

� Hiding of underlying details for project
admins

Unified Web-based Administration

SourceCast

Two step registration process

� Register as user of sunsource.net
http://gridengine.sunsource.net/servlets/Join

� Register as a project member of Grid
Engine
http://gridengine.sunsource.net/servlets/ProjectMembershipRequest

Grid Engine Registration

SourceCast

� Observer
Read-only access to project code; can also submit issues

� Content Developer
Read/Write access to project web content

� Developer
Read/Write access to all of project

� DeveloperPlus
Developer with Upload permissions

� ProjectOwner
DeveloperPlus with project specific admin priviledges

Grid Engine Roles

SourceCast

http://gridengine.sunsource.net/project/gridengine/maillist.html

� User Mailing List

� announce@gridengine.sunsource.net

� users@gridengine.sunsource.net

� Developer Mailing Lists

� dev@gridengine.sunsource.net

� issues@gridengine.sunsource.net

� cvs@gridengine.sunsource.net

Grid Engine Mailing Lists

SourceCast

Issuezilla: Bug Reports, Enhancements,
Patch Submission, Task Mgmt

� currently 7 GE issue categories

� cleanup: source code cleanup tasks

� doc: man pages and documentation

� gui: qmon related issues

� install: installation related issues

� kernel: CLI and daemon specific issues

� testsuite: testsuite related issues

� www: Grid Engine web site issues

Grid Engine Issuezilla

SourceCast

� Download Binaries
Prebuilt courtesy binaries for the most important
Unix architectures
http://gridengine.sunsource.net/project/gridengine/download.html

� File Exchange Tool

� source tarballs

� contributions

� source code patches either here or in Issuezilla

Grid Engine Upload/Download

SourceCast

� cvsweb allows browsing, diffing and
downloading of single files

� Getting the source with cvs

� must be at least Observer

� cvs version 1.11 client/server needed

� ssh tunnel when behind firewall

� ssh must support tunneling (-L option)

Grid Engine cvs / cvsweb

SourceCast

� Two choices with/without ssh tunnel
without ssh tunnel:

% setenv CVSROOT :pserver:<username>@cvs.gridengine.sunsource.net:/cvs

with ssh tunnel on the machine where the ssh tunnel is set up:
% setenv CVSROOT :pserver:<username>@localhost:/cvs

� ssh tunnel setup
% ssh -f -x -L 2401:localhost:2401 \
tunnel@cvs.gridengine.sunsource.net echo hallo
(enter password "tunnel" when prompted)

Grid Engine cvs (cont'd)

SourceCast

� Login at CVS repository
% cvs login
(enter your Grid Engine website password when prompted)

� Source checkout
% cvs -z 9 co gridengine
(maintrunk checkout under ./gridengine)
% cvs -z 9 co -r V53_BRANCH gridengine -d V53_BRANCH
(checkout of V53_BRANCH under ./V53_BRANCH instead
of ./gridengine)
% cvs -z 9 co -r V53_TAG gridengine
(checkout of a tagged snapshot)

Grid Engine cvs (cont'd)

SourceCast

� Branching

� release versions as branch of maintrunc

� fixes applied to both branches

� for special implementations subbranches

� for new release branches are obsoleted and die

� main development in maintrunc

� avoid branching if possible, development
overhead

Grid Engine cvs (cont'd)

SourceCast

� Patch integration procedure

� cvs diff for patch creation

� discuss patch on dev mailing list

� submit patch either via Issuezilla or FileExchange Tool

� get patch review

� Developer integrates patch

� Become Developer

� Code Stability - Nightly Build

Grid Engine Patches

SourceCast - Important Links
� Open Source Site

http://gridengine.sunsource.net
� Sun Grid Engine

http://www.sun.com/gridware

� Registration/Membership
http://gridengine.sunsource.net/servlets/Join

http://gridengine.sunsource.net/servlets/ProjectMembershipRequest

(approval by project manager required)

� Mailing Lists
http://gridengine.sunsource.net/project/gridengine/maillist.html

� Issuezilla
http://gridengine.sunsource.net/issues/query.cgi

� Courtesy Binaries
http://gridengine.sunsource.net/project/gridengine/download.html

� Documentation, Howtos
http://gridengine.sunsource.net/project/gridengine/documentation.html
http://gridengine.sunsource.net/project/gridengine/howto/howto.html

� CVS
http://www.cvshome.org and http://www.wincvs.org

SGE code overview

� Overview of CVS repository

� the top level directories

� the project site 'infrastructure'

� the 3rd party modules

� THE source

SGE code overview (cont'd)

� Overview of CVS repository

Changelog

� logging of all (significant) changes

� clear definition of source tags (and releated versions)

� most accurate source of information for a developer,
supporter and user about (fixed) issues and bugs

doc/

� files which go in distribution

� sometimes linked from project site

doc/man

� manual pages in nroff format

SGE code overview (cont'd)

doc/devel

� Developer documentation

� still quite incomplete

source/

� everything which is needed during a build

testsuite/

� all files and tests for Tcl/Tk/Expect based testsuite

� used by engineering for QA, nightly builds

� also necessary for compatibility tests (if partner creates
his own (commercial) distribution

www/

� files of project site

SGE code overview (cont'd)

A closer look at the source/ directory

3rdparty/ - 3rd party source code

aimk* - architecture independent make

aimk.site - global settings for additional libraries und programs

clients/ - all non-SGE daemons

common/ - code shared by daemons and clients

daemons/ - all SGE daemons

dist/ - files which go in a SGE distribution

experimental/ - unsupported stuff and prototypes

libs/ - libraries used but SGE daemons and clients

scripts/ - utility scripts

security/ - security framework, including OpenSSL

utilbin/ - helper programs which go in $SGE_ROOT/utilbin

SGE code overview (cont'd)

A glance at the source/3rdparty directory

adoc - Adoc a tool for generating documentation

fnmatch - needed for the NEC port

openssl - only LICENCE, not part of the GE project

qmake - preconfigured qmake 3.78.1

qmon - 3rd party widgets used by qmon

qtcsh - a modified tcsh

remote - modified rlogin/rsh to run with SGE

sge_depend - tool for creating make dependencies

strptime - needed for NEC port, MacOS X port

zlib - zlib - currently not part of standard build

SGE code overview (cont'd)

source/common directory

� mostly files which did not make their way in a
library

� basis_types.h
� defines architecure specific format strings

� contains other system wide defines

� read_object.c, read_write_*.c
� read_object() generic function to read spool files from disc. Not

used for all spool files

� uses function pointers which point to actual functions which do the
work (read_write_*.c in common/ directory)

� writing of objects is done directly: write_ckpt()

SGE code overview (cont'd)

libs/ - libraries used by most commands

� comm/

� The low level communication library

� communicates works with sge_commd only

� single threaded

� most functionality isolated in

comm/commlib.c

SGE code overview (cont'd)

libs/ (cont'd)

cull/

� Common Usuable List Library

� provides reusable list functions

� provides "database" like abstraction for
creating, accessing etc. list objects:

� lCreateList(), LFreeList()
� lCreateElem(), LFreeElem()
� lWhat(), lWhere()
� lCopyList()

SGE code overview (cont'd)

libs/cull (cont'd)

� packing routines needed to

� spool CULL lists to/from disk (job spooling)

� send lists to communication partners (by
using communication library)

� zlib compression can be enabled through
compilation and at runtime

� packing code in

pack.c

SGE code overview (cont'd)

libs/ (cont'd)

� gdi/ - Grid Engine Database Interface

� standardizes the mechanism for creating,
retrieving, changing and deleting objects
stored within the qmaster process.

� GDI is the main interface for communication
between a client and qmaster

� Implementation is two-fold:

� qmaster: implements the server functionality

� client side: implement calls for getting/adding/
deleting/modifying objects in qmaster

SGE code overview (cont'd)

libs/gdi/ - Grid Engine Database Interface (cont'd)

� Uses CULL for internal representation of stored
objects

� Also implements functions for sending data
between and to daemons:

� requests - the most general form for data excahnge

� orders - what the scheduler sends to qmaster

� events - what qmaster sends to event client

� (load reports, job reports) - what the execd sends to q.

� helper functions for tight PE integration

SGE code overview (cont'd)

libs/gdi/ - Grid Engine Database Interface (cont'd)

� all CULL lists (all persistent and temporary
objects) are defined in the gdi/ directory:

sge_<objname>L.h

� All SGE CULL lists are "glued" together by
sge_boundaries.h

SGE code overview (cont'd)

Libs/ (cont'd)

� rmon/

� Designed as a remote monitoring library

� Used for implementing debugging macros
which print to stdout/err if commands which
use rmon functions are started with
environment variable $SGE_DEBUG_LEVELset.

� Most popular macros/functions are

� DENTER/DEXIT - when a function is entered/left

� DTRACE- print name and line of current file

� DPRINTF - printf()

� See rmon/sgermon.h for macro definition

SGE code overview (cont'd)

libs/ (cont'd)

� sched/

� Implements most of the scheduling code

� needed also by qmaster, qstat, qhost...

� e.g. qstat is a fat client. To display the information
provided by qstat the "raw" data it receives, it needs to
process it with the help of the scheduling routines

� SGEEE code in sgeee.c

SGE code overview (cont'd)

libs/ (cont'd)

� uti/

� low level library, independent from rest of
source code

� "self contained", no global variables....

� Implements utility and helper functions used
by naerly all SGE commands

� Does not use libcull, libgdi, libsched

� only uses librmon for debugging macros

SGE code overview (cont'd)

The daemons/ directory

� commd/ - multiplexer for communication

� common/ - code shared by several daemons

� execd/ - report load, start/reap jobs

� qmaster/ - the "database" server

� schedd/ - event client which gives orders

� shadowd/ - a kind of "watchdog"

� shepherd/ - a self contained job starter

SGE code overview (cont'd)

daemons/common

� shared code needed by more than one daemon

� reading/writing jobs

� setup environment for child process

� sending mail

SGE code overview (cont'd)

daemons/commd

� commd is a message multiplexer

� uses a store-and-forward principle

� communication can be routed over two
commd's

� commd does not open sockets actively to its
clients (except: routing messages to another
commd)

� commd clients are called "commprocs"

� client needs to use "commlib" for
communication with commd

SGE code overview (cont'd)

daemons/qmaster

� Important files:

� sge_c_gdi.c, sge_c_ack.c

� server part of GDI

� sge_job.c

� accept new job, delete job, qalter job,
handle job dependencies

� sge_give_jobs.c

� send job to execd

� process job reports and job end

SGE code overview (cont'd)

daemons/qmaster

� sge_follow.c

� follow orders from scheduler

� sge_m_event.c

� send events to event client (scheduler)

SGE code overview (cont'd)

daemons/schedd

� uses schedlib

� sge_category.c

� Categorize jobs for efficiency reasons

� sge_access_tree.c

� user_sort=true for pending jobs

� sge_c_event.c

� generic event client interface

� sge_process_events.c

� trigger scheduling, get events, send orders

SGE code overview (cont'd)

daemons/execd

� dispatcher.c

� all work is done from here

� exec_job.c

� setup files for shepherd, start shepherd

� execd_ck_to_do.c

� monitor (->limits), reprioritize jobs

� signal jobs (via shepherd)

� execd_job_exec.c

� handle jobs received from qmaster

SGE code overview (cont'd)

daemons/execd (cont'd)

� execd_signal_queue.c

� send signals to job (via shepherd)

� execd_ticket.c

� process new tickets for job and call PTF

� job_report_execd.c

� create job reports and put in send queue

� load_avg.c

� retrieve load values and create load reports

� ptf.c

� SGEEE: Priority Translation Facility

SGE code overview (cont'd)

daemons/execd (cont'd)

� reaper_execd.c

� handle exited job (shepherd)

� report.c

� send job/load reports

� sge_load_sensor.c

� interface for starting external load sensor

SGE code overview (cont'd)

daemons/shepherd

� shepherd.c

� read config

� start prolog/pe/job/epilog

� do signal handling

� write usage

� exit

� builtin_starter.c

� fork()/exec() job

SGE code overview (cont'd)

daemons/shepherd (cont'd)

� setrlimits.c

� set Unix resource limits

� builtin_starter.c

� fork()/exec() job

� uses code from common/

� pdc.c - kill job

� setosjobid.c - set 'JOBID'

SGE code overview (cont'd)

� The clients/ directory

� common/ - shared code

� qacct/ - (nearly) a standalone client

� qalter/ - same code as "qresub"

� qconf/ - administrative interface

� qdel/ - delete jobs

� qevent/ - a sample qevent client

� qhost/ - view cluster by hosts

� qsh/ - same code as "qrsh", "qlogin"

� qmod/ - change queue and job status

SGE code overview (cont'd)

The clients/ directory (cont'd)

� qmon/ the graphical interface

� qstat/ view cluster by queues

� qsub/ submit jobs

� qhold/qrls just wrappers for "qalter"

SGE code overview (cont'd)

� Most of the clients commands
(exception is qmon of course) have
only one or few source files

� The clients mostly do

� command line parsing

� setup the request

� send a GDI request

� interpret answer from qmaster

SGE code overview (cont'd)

Flow of GDI requests

SGE code overview - I18N

I18N support

� One of the BIG rules at Sun

� I18n/l10n requires to extract messages from
source code t ocreate message catalogues

� We needed a mechanism to i13ze source code
in a short time which was not designed for it

� Not every (Unix) system supports I18N in an
acceptabe way (gettext() vs. gettxt()):

gettext("How now brown cow");

gettxt("COW:4711", "How now brown cow");

SGE code overview - I18N (cont'd)

� Solution

� Solaris and Linux support gettext()

� gettext library available under GPL, therefore not part of
the open source project

� SGE messages are defined through a macro in

msg_<dirname>.h

� Messages are defined as follows:
#define MSG_CONF_GETCONF_S _("getting config: %s")

� macros are (more or less) readable

� macros define the type of their parameters in the end

SGE code overview - I18N (cont'd)

In common/basis_types.h
#ifdef __SGE_COMPILE_WITH_GETTEXT__

include <libintl.h>

include <locale.h>

include "sge_language.h"

define _(x) sge_gettext(x)

#else

define _(x) (x)

#endif

In the code
ERROR((SGE_EVENT, MSG_CONF_GETCONF_S, lGetString(lFirst(alp),

AN_text)));

Messages can be found with tags:

% setenv C '*/*.[ch] */*/*.[ch]'

% ctags $C

SGE code overview - I18N (cont'd)

Language setup

often done in

libs/gdi/gdi_setup.c:sge_gdi_setup()

#ifdef __SGE_COMPILE_WITH_GETTEXT__

 /* init language output for gettext() , it will use the right
language */

 install_language_func((gettext_func_type) gettext,

 (setlocale_func_type) setlocale,

 (bindtextdomain_func_type) bindtextdomain,

 (textdomain_func_type) textdomain);

 sge_init_language(NULL,NULL);

#endif /* __SGE_COMPILE_WITH_GETTEXT__ */

SGE code overview - I18N (cont'd)

Functions for I18N

libs/uti/sge_language.c

sge_init_languagefunc (): Initialize I18N

sge_gettext (): "wrapper" for gettext()

SGE code overview - Coding Conventions

� see "coding standards" under Docs

� gridengine/source/scripts/format.sh

� expand tabs to blanks, intend 3, wrap at 80

� function, concept description with adoc for
automatic documentation generation

� ansi C prototypes

� reuse, extend existing code

� document new functionalities -> man pages

SGE code overview - TCP

� TCP (Technical Compute Portal)

� Java servlet glue to GE cli

� working prototype setups

� planned for open source May/June 02

� installation and setup streamlining needed

� Iplanet Portal Server required

� Portal Server authentication facility

� Portal Server channels

� Proof of concept -> Refinement Projects

SGE code overview - TCP (cont'd)

� TCP - Portal capabilities

� login to Unix system via web

� project creation

� adding of new apps

� adding of new content channels

� user specific content layout

� administer channel availability

� netlet technology

� upload/download functionality

SGE code overview - TCP (cont'd)

� TCP - Desirable Features

� default submit definition

� undo/redo for portal setup

� upload/download of a bunch of files

� project file deletion/renaming

� Inputform improvements

� data sharing between projects

� authentication delegation (e.g. kerberos)

� easy adding of new apps to portal (XML ?)

Building Grid Engine from
scratch
� It's easy and straightforward.

� Open source is the development
platform

� get sources via cvs or a source tarball

Building Grid Engine from scratch (cont'd)

Compiling SGE (in 4-150 minutes)

� "gmake" required

� Use Sun WorkShop compiler 5.0 or 6.2

% cd gridengine/source

(adapt aimk.site and aimk.private if needed)

% aimk -only-depend - build dependency tool

% scripts/zerodepend - null out dependencies

% aimk depend - create dependencies

% aimk - build SGE

% aimk -secure - build SGE with OpenSSL

% aimk -debug -j 4 - pass -j 4 option to "make"

% aimk -help

Building Grid Engine from scratch (cont'd)

Installing SGE in 5 minutes
% ln -s scripts/distinst myinst

% setenv SGE_ROOT <my_sge_root>

(% setenv COMMD_PORT 7777)

% su - (optional)

% ./myinst -allall solaris solaris64

% cd $SGE_ROOT

% util/setfileperm.sh - (only if root installs)

% ./install_qmaster

% source default/common/settings.csh

% ./install_execd

% qstat -f

Building Grid Engine from scratch (cont'd)

More documentation on building SGE

� In gridengine/source:

� README.BUILD

� main BUILD document with pointers to further docs

� README.aimk

� how aimk works

� dist/README.arch

� details of the "arch" script

� scripts/README.distinst

� howto install a compiled version of SGE in
$SGE_ROOT

� scripts/README.mk_dist

� only needed for creators of a distribution

Andre Alefeld

andre.alefeld@sun.com

