
www.epcc.ed.ac.uk/sungrid

EPCC Sun Data and Compute Grids
Project Update

Using Sun Grid Engine and Globus for Multi-Site
Resource Sharing

Grid Engine Workshop, Regensburg, September 2003

Geoff Cawood
Edinburgh Parallel Computing Centre (EPCC)

 Email: geoffc@epcc.ed.ac.uk

www.epcc.ed.ac.uk/sungrid2

Overview

Background
Project aims

Current status

Software deliverables
– TOG (Transfer-queue Over Globus)

• Use in ODD-Genes project

– JOSH (JOb Scheduling Hierarchically)

Conclusions

www.epcc.ed.ac.uk/sungrid3

Background

EPCC
– Edinburgh Parallel Computing Centre: www.epcc.ed.ac.uk

– Part of the University of Edinburgh in Scotland

– “A technology-transfer centre for high-performance-computing”

– Representing NeSc (National e-Science Centre)

A collaborative project between EPCC and Sun
– Referred to as ‘Sun DCG' or ‘Sungrid’ within EPCC

– Project website: www.epcc.ed.ac.uk/sungrid

– Team of 4 people - Thomas Seed also here

– 57 person months of EPCC effort over 2 years

– Sun approve project deliverables

– Funded by UK DTI/EPSRC e-Science core program

www.epcc.ed.ac.uk/sungrid4

Project Goal

Final project goal
– “Develop a fully Globus-enabled compute and data scheduler

based around Grid Engine, Globus and a wide variety of data
technologies”

What does that mean in practice?
Identify five key functional aims
– 1. Job scheduling across Globus to remote Grid Engines

– 2. File transfer between local client site and remote jobs

– 3. File transfer between any site and remote jobs

– 4. Allow 'datagrid aware' jobs to work remotely

– 5. Data-aware job scheduling

www.epcc.ed.ac.uk/sungrid5

G
lobus

S
c
h
e
d
u
l
e
r

Functional Aim

1. Job scheduling across Globus to remote GEs
– Schedule jobs securely onto remote machines

– Allow collaborating enterprises to share compute resources

– Efficiency benefits of using lightly loaded remote machines

Grid Engine
a b c d

Grid Engine
e f g h

Site A Site B

S
c
h
e
d
u
l
e
r

www.epcc.ed.ac.uk/sungrid6

Functional Aim

2. File transfer between local site and remote jobs
– Data staging, executable staging

– Allow jobs expecting local file I/O to function properly

Client Site Compute Site

1. Job submitted

3. Job runs

2. Input files transferred (PRE)

4. Output files transferred (POST)

www.epcc.ed.ac.uk/sungrid7

Functional Aim

3. File transfer between any site and remote jobs
– Allow access to shared data files anywhere

• HTTP sites, FTP sites, GridFTP sites

Client Site Compute Site

1. Job submitted

3. Job runs

2. Input files transferred (PRE)

4. Output files transferred (POST)

Data Site

www.epcc.ed.ac.uk/sungrid8

Functional Aim

4. Allow 'datagrid aware' jobs to work remotely
– Ensure that attempts by a job to access Globus-enabled data

sources are not hindered by running the job remotely
• Different style of job - dynamic data access not just pre and post

• Data sources: GridFTP sites, OGSA-DAI databases, SRB

Client Site Compute Site

1. Job submitted

2. Job starts running

3. Job reads from database

4. Job does some processing

Data Site 1 Data Site 2

5. Job writes to database

6. Goto 3 until done

www.epcc.ed.ac.uk/sungrid9

Functional Aim

5. Data-aware job scheduling
– Schedule data-intensive jobs ‘close’ to the data they require

– In this example Compute Site 2 has better access to the Data
Site

Client Site Compute Site 1

1. Job submitted

Data SiteCompute Site 2

2. Data transferred
quickly

www.epcc.ed.ac.uk/sungrid10

Project Status

Early workpackages
– Investigations, self-education

– Delivering documents

WP 1: Analysis of existing Grid components (finished)
– WP 1.1: UML analysis of core Globus 2.0

– WP 1.2: UML analysis of Grid Engine

– WP 1.3: UML analysis of other Globus 2.0
• Documents available at project web site

– WP 1.4: Globus 3.0 Investigation

– WP 1.5: Exploration of data technologies
• Documents will be available after approval by Sun

WP 2: Requirements Capture & Analysis (finished)
• Documents available at project web site

www.epcc.ed.ac.uk/sungrid11

Project Status

Later workpackages
– Design, development and test

– Delivering design documents and software

WP 3: Prototype Development (finished)
– TOG (Transfer-queue Over Globus) software produced

• Software and docs available from Grid Engine community web site

• http://gridengine.sunsource.net/project/gridengine/tog.html

WP 4: Hierarchical Scheduler Design (finished)
– JOSH (JOb Scheduling Hierarchically) software designed

• Documents will be available after approval by Sun

WP 5: Hierarchical Scheduler Development
– Starting September 2003

– Finishing end January 2004

www.epcc.ed.ac.uk/sungrid12

TOG (Transfer-queue Over Globus)

Grid Engine
a b c d

e

Grid Engine
e f g h

d

Site A Site B

G
lobus 2.2.x

User A User B

– No new meta-scheduler - solution uses Grid Engine at two levels

– Integrates GE and Globus 2.2.x
– Supply GE execution methods (starter method etc.) to implement a 'transfer

queue' which sends jobs over Globus to a remote GE
– GE complexes used for configuration
– Globus GSI for security, GRAM for interaction with remote GE
– GASS for small data transfer, GridFTP for large datasets
– Written in Java - Globus functionality accessed through Java COG kit

Transfer
queue

www.epcc.ed.ac.uk/sungrid13

TOG Software

Functionality
– 1. Job scheduling across Globus to remote Grid Engines

– 2. File transfer between local client site and remote jobs
• Add special comments to job script to specify set of files to transfer

between local site and remote site

– 4. Allow 'datagrid aware' jobs to work remotely
• Use of Globus GRAM ensures proxy certificate is present in remote

environment

Absent
– 3. File transfer between any site and remote jobs

• Files are transferred between remote site and local site only

– 5. Data-aware job scheduling

www.epcc.ed.ac.uk/sungrid14

TOG Software

Pros
– Simple approach
– Usability

● Existing Grid Engine interface
● Users only need to learn Globus certificates

– Remote administrators still have full control over their resources

Cons
– Low quality scheduling decisions

● State of remote resource – is it fully loaded?
● Ignores data transfer costs

– Scales poorly - one local transfer queue for each remote queue
– Manual set-up

● Configuring the transfer queue with same properties as remote queue

– Java virtual machine invocation per job submission

www.epcc.ed.ac.uk/sungrid15

TOG in Action

ODD-Genes Project
– Uses SunDCG and OGSA-DAI to demonstrate a scientific use for the grid

(bioinformatics)

Shown at UK All Hands Meeting 2003 in Sept

Will be shown at Supercomputing 2003 in Nov

Demo links 3 sites within Edinburgh University
– Scottish Centre for Genomic Technology and Informatics (GTI)

– Medical Research Council’s Human Genetics Unit in Edinburgh (HGU)

– One of EPCC’s high performance compute resource (Sun Fire 15K)

TOG used at GTI to access EPCC compute
resource

www.epcc.ed.ac.uk/sungrid16

microarray

data

ODD-Genes

GTI

HGU

EPCC

User

data query

Overview of ODD-Genes Project
– User submits microarray data to GTI
– GTI uses EPCC to perform analysis (TOG)
– User views analysis results (gene expressions)
– User queries for more information on genes from HGU

(OGSA-DAI)

Compute Resource

Data Provider

microarray analysis

TOG

www.epcc.ed.ac.uk/sungrid17

JOSH (JOb Scheduling Hierarchically)

Developing JOSH software
– Address the shortcomings of TOG

– Incorporate Globus 3 and grid services

Adds a new 'hierarchical'
scheduler above Grid Engine
– Command line interface

– hiersched submit_ge

• Takes GE job script as input
(embellished with data requirements)

• Queries grid services at each compute
site to find best match and submits job

• Job controlled through resulting 'job
locator'

User

Job
Spec

Hierarchical Scheduler

hiersched user Interface

Grid Engine

Grid Service
Layer

Input Data Site Output Data Site

Grid Engine

Grid Service
Layer

www.epcc.ed.ac.uk/sungrid18

JOSH Sites

Compute sites
– One Grid Engine per compute site

– A persistent JOSH 'site service' runs in a Grid
Service Container at each compute site

Configuration file at client site
– Maps compute site names to site service handles

• 'edi' -> http://www.rush.ed.ac.uk:8080/JoshSiteService

• 'glasgow' -> http://www.otf.gla.ac.uk:8080/JoshSiteService

• 'london' -> http://www.balrog.ln.ac.uk:8080/JoshSiteService

– Defines a 'pool' of candidate
sites for the hierarchical
 scheduler to choose from

Grid Engine

Grid Service Container

JOSH Site Service

Hierarchical Scheduler

hiersched user Interface

Grid Engine

JOSH Site
Service

Grid Engine

JOSH Site
Service

Grid Engine

JOSH Site
Service

Client Site

Compute Site

Config
File

edi

www.epcc.ed.ac.uk/sungrid19

JOSH Usage

geoffc% hiersched sitestatus

Hierarchical Scheduler Site Status

==================================

Site Name Status Site Handle

--------- ------ -----------

edi Up http://www.rush.ed.ac.uk:8080/JoshSiteService

glasgow Down http://www.otf.gla.ac.uk:8080/JoshSiteService

london Up http://www.balrog.ln.ac.uk:8080/JoshSiteService

geoffc% hiersched submit-ge myjob.sh

edi:4354

geoffc% hiersched jobstatus edi:4354

Pending

geoffc% hiersched terminate edi:4354

SUCCESS

geoffc%

www.epcc.ed.ac.uk/sungrid20

Scheduling Algorithm

The hierarchical scheduler chooses a site for a
job according to the following criteria:
– Physical capability

• Sites which have no queues that can satisfy the job are rejected

– Load score
• Define a site's load score as the minimum load of its capable

queues for a given job

• Sites with lower load are favoured

– Data proximity
• Sites 'closer' to their data sources are favoured

Weighting factors
– Can supply multipliers for load and data proximity with the

job
• Eg. so data proximity can be ignored for compute intensive jobs

www.epcc.ed.ac.uk/sungrid21

JOSH Implementation

One hiersched job submission is implemented as
three Grid Engine jobs at the compute site
– 1. PRE Job - pulls input data files to the compute site

– 2. MAIN Job - the user's original job script

– 3. POST Job - pushes output data files to their destinations and
cleans up

Separate jobs approach solve various issues
– Don't want a high performance queue clogged up with a big data

transfer task
• PRE and POST jobs can be run in dedicated data transfer queue

– Do want a terminated job to be cleaned up and partial output data
returned

• Terminating MAIN job releases POST job

www.epcc.ed.ac.uk/sungrid22

Compute Site Implementation

Grid service operations
– Call out to GE (and other)

executables

– Parse output (fiddly)

– Some more-specific GE
commands would be handy

Grid Services Container

JoshSiteService
 canRun(...)
 jobStatus(...)
 loadScore(…)
 dataProximityScore(...)
 ...

ping

qsub -w v

qstat/qacct

Globus 3 operations always run as container owner
– But job submission, termination etc. must run under the client

user's remote account

– Ensure correct privileges, prevent killing someone else's job etc.

– Workround is to use the GT3 Managed Job Service - bit ugly

– Allows a script to run under the client user's account

Compute Site

www.epcc.ed.ac.uk/sungrid23

JOSH

Pros
– Satisfies the five functionality goals

– Need only minor additions to existing GE job scripts
• Data requirement comments

– Remote administrators still have full control over their GEs

– Tries to make use of existing GE functionality eg. 'can run'

Cons
– Latency in decision making

– Not so much 'scheduling' as 'choosing'

– Grid Engine specific solution

www.epcc.ed.ac.uk/sungrid24

Conclusions

Significant progress since last GE Workshop
– Learned a lot

– Focussed on achievable goal that will hopefully have some wider use

– Released various documents and the TOG software

Prototyping exercise proved valuable
– Developing TOG was a worthwhile and educational first step

– Already being used for ODD-Genes project, potentially others

Hierarchical scheduler implementation starting
– JOSH software should address the main TOG limitations

– Early adoption of Globus 3 is still a bit of a risk

Our interests at this GE Workshop
– GE developments, Globus 3 experiences, multi-site scheduling

– Anything to ease our final development phase!

