eloCC

EPCC Sun Data and Compute Grids
Project Update

Using Sun Grid Engine and Globus for Multi-Site
Resource Sharing

Grid Engine Workshop, Regensburg, September 2003

Geoff Cawood
Edinburgh Parallel Computing Centre (EPCC)

Email: geoffc@epcc.ed.ac.uk

www.epcc.ed.ac.uk/sungrid

Overview

Background
Project aims
Current status

Software deliverables

— TOG (Transfer-queue Over Globus)
« Use in ODD-Genes project

— JOSH (JOb Scheduling Hierarchically)
Conclusions

2 www.epcc.ed.ac.uk/sungrid

Background

EPCC

— Edinburgh Parallel Computing Centre: www.epcc.ed.ac.uk

— Part of the University of Edinburgh in Scotland

— “A technology-transfer centre for high-performance-computing”
— Representing NeSc (National e-Science Centre)

A collaborative project between EPCC and Sun
— Referred to as ‘Sun DCG' or ‘Sungrid’ within EPCC

— Project website: www.epcc.ed.ac.uk/sungrid

— Team of 4 people - Thomas Seed also here

— 57 person months of EPCC effort over 2 years

— Sun approve project deliverables

— Funded by UK DTI/EPSRC e-Science core program

3 www.epcc.ed.ac.uk/sungrid

Project Goal

Final project goal

— “Develop a fully Globus-enabled compute and data scheduler
based around Grid Engine, Globus and a wide variety of data
technologies”

What does that mean in practice?

|dentify five key functional aims

— 1. Job scheduling across Globus to remote Grid Engines
— 2. File transfer between local client site and remote jobs
— 3. File transfer between any site and remote jobs

— 4. Allow 'datagrid aware' jobs to work remotely

— 5. Data-aware job scheduling

4 www.epcc.ed.ac.uk/sungrid

Functional Aim

1. Job scheduling across Globus to remote GEs
— Schedule jobs securely onto remote machines

— Allow collaborating enterprises to share compute resources

— Efficiency benefits of using lightly loaded remote machines

Grid Engine
_~» a b

c d
L

Grid Engine

T

= 0O —C O ® 0 W

-~ ® —cCc O ® >0 W

5 www.epcc.ed.ac.uk/sungrid

Functional Aim

2. File transfer between local site and remote jobs

— Data staging, executable staging
— Allow jobs expecting local file I/O to function properly

Client Site

1. Job submitted

2. Input files transferred (PRE)

A

Compute Site

\4 \4

3.Job runs

4. Output files transferred (POST)

www.epcc.ed.ac.uk/sungrid

Functional Aim

3. File transfer between any site and remote jobs

— Allow access to shared data files anywhere
« HTTP sites, FTP sites, GridFTP sites

Client Site Compute Site Data Site

1. Job submitted >

«<— 2. Input files transferred (PRE)

3. Job runs

4. Output files transferred (POST)

\4

7 www.epcc.ed.ac.uk/sungrid

Functional Aim

4. Allow 'datagrid aware' jobs to work remotely
— Ensure that attempts by a job to access Globus-enabled data
sources are not hindered by running the job remotely

 Different style of job - dynamic data access not just pre and post
« Data sources: GridFTP sites, OGSA-DAI databases, SRB

Client Site Compute Site Data Site 1 Data Site 2

1. Job submitted >

2. Job starts running
3.Job reads from database +——

4. Job does some processing

\4

5. Job writes to database

6. Goto 3 until done

8 www.epcc.ed.ac.uk/sungrid

Functional Aim

5. Data-aware job scheduling

— Schedule data-intensive jobs ‘close’ to the data they require

— In this example Compute Site 2 has better access to the Data
Site

Client Site Compute Site 1 Compute Site 2 Data Site

1. Job submitted >

«— 2. Data transferred
quickly

9 www.epcc.ed.ac.uk/sungrid

Early workpackages

Investigations, self-education
Delivering documents

Project Status

WP 1: Analysis of existing Grid components (finished)

WP 1.1: UML analysis of core Globus 2.0
WP 1.2: UML analysis of Grid Engine

WP 1.3: UML analysis of other Globus 2.0
« Documents available at project web site

WP 1.4: Globus 3.0 Investigation
WP 1.5: Exploration of data technologies

« Documents will be available after approval by Sun

WP 2: Requirements Capture & Analysis (finished)

« Documents available at project web site

10

www.epcc.ed.ac.uk/sungrid

Project Status

Later workpackages

— Design, development and test
— Delivering design documents and software

WP 3: Prototype Development (finished)

— TOG (Transfer-queue Over Globus) software produced
« Software and docs available from Grid Engine community web site
« http://gridengine.sunsource.net/project/gridengine/tog.html

WP 4: Hierarchical Scheduler Design (finished)
— JOSH (JOb Scheduling Hierarchically) software designed
« Documents will be available after approval by Sun
WP 5: Hierarchical Scheduler Development

— Starting September 2003
— Finishing end January 2004

11 www.epcc.ed.ac.uk/sungrid

Site A
User A—»_Grid Engine
a b c n
[
Transfer| €
gueue []

Site B

Grid Engine

X'Z'g'$Nqo|9

<+“— User B

— No new meta-scheduler - solution uses Grid Engine at two levels
— Integrates GE and Globus 2.2.x

— Supply GE execution methods (starter method etc.) to implement a 'transfer
gueue' which sends jobs over Globus to a remote GE

— GE complexes used for configuration

— Globus GSI for security, GRAM for interaction with remote GE
— GASS for small data transfer, GridFTP for large datasets
— Written in Java - Globus functionality accessed through Java COG kit

12

www.epcc.ed.ac.uk/sungrid

TOG Software

Functionality

— 1. Job scheduling across Globus to remote Grid Engines

— 2. File transfer between local client site and remote jobs

« Add special comments to job script to specify set of files to transfer
between local site and remote site

— 4. Allow 'datagrid aware' jobs to work remotely

« Use of Globus GRAM ensures proxy certificate is present in remote
environment

Absent

— 3. File transfer between any site and remote jobs
» Files are transferred between remote site and local site only
— 5. Data-aware job scheduling

13 www.epcc.ed.ac.uk/sungrid

TOG Software

Pros
— Simple approach
— Usability

* Existing Grid Engine interface
* Users only need to learn Globus certificates

— Remote administrators still have full control over their resources

cons

— Low quality scheduling decisions
* State of remote resource — is it fully loaded?
* |gnores data transfer costs

— Scales poorly - one local transfer queue for each remote queue

— Manual set-up
* Configuring the transfer queue with same properties as remote queue

— Java virtual machine invocation per job submission

14 www.epcc.ed.ac.uk/sungrid

TOG In Action

ODD-Genes Project

— Uses SunDCG and OGSA-DAI to demonstrate a scientific use for the grid
(bioinformatics)

Shown at UK All Hands Meeting 2003 in Sept
Will be shown at Supercomputing 2003 in Nov
Demo links 3 sites within Edinburgh University

— Scottish Centre for Genomic Technology and Informatics (GTI)
— Medical Research Council’'s Human Genetics Unit in Edinburgh (HGU)
— One of EPCC'’s high performance compute resource (Sun Fire 15K)

TOG used at GTl to access EPCC compute
resource

15 www.epcc.ed.ac.uk/sungrid

Overview of ODD-Genes Project
User submits microarray data to GTI

GTI uses EPCC to perform analysis (TOG)
User views analysis results (gene expressions)
User queries for more information on genes from HGU

%User microarray

(OGSA-DAI)

data

GTI

TOG

microarray analysis

data query

HGU

Data Provider

ODD-Genes

EPCC

Compute Resource

16

www.epcc.ed.ac.uk/sungrid

GCC JOSH (JOb Scheduling Hierarchically)

User
Developing JOSH software %
Job
— Address the shortcomings of TOG l
— Incorporate Globus 3 and grid services
. . | hiersched user Interface
AddS a new hlerarCh|Ca| Hierarchical Scheduler
scheduler above Grid Engine e
— Command line interface Grid Service Grid Service
_ _ Layer Layer
— hiersched submt_ge Grid Engine Grid Engine
« Takes GE job script as input ,
(embellished with data requirements) e //l
« Queries grid services at each compute Input Data Site | | Output Data Site
site to find best match and submits job
 Job controlled through resulting ‘job 8 8
locator'

17 www.epcc.ed.ac.uk/sungrid

JOSH Sites

Compute Site

Compute sites

Grid Service Container
— One Grid Engine per compute site JOSH Site Service
— A persistent JOSH 'site service' runs in a Grid Grid Engine
Service Container at each compute site [] L]

Configuration file at client site
— Maps compute site names to site service handles
hiersched user Interface

 'edi' -> http://www.rush.ed.ac.uk:8080/JoshSiteSengce
« 'glasgow' -> http://www.otf.gla.ac.uk:8080/JoshSite %If_)r}?i'@ Hierarchical Scheduler
e

e 'london' -> http://vvww.balrog.In.ac.uk:8080/JoshS / \
— Defines a 'pool' of candidate

Client Site

. . . JOSH Site JOSH Site JOSH Site
sites for the hierarchical Service Service Service
scheduler to choose from Grid Engine | | Grid Engine | | Grid Engine
edi |l HEOE | .

18 www.epcc.ed.ac.uk/sungrid

JOSH Usage

geof f c% hi ersched sitestatus

Hi erarchi cal Scheduler Site Status

edi Up http://ww. rush. ed. ac. uk: 8080/ JoshSi t eSer vi ce
gl asgow Down http://ww. otf.gla.ac. uk: 8080/ JoshSi teService
| ondon Up http://ww. bal rog. I n.ac. uk: 8080/ JoshSi t eServi ce

geof fc% hi ersched subm t-ge nyjob. sh
edi : 4354

geof f c% hi ersched j obstatus edi: 4354
Pendi ng

geof fc% hi ersched term nate edi: 4354
SUCCESS

geof f c%

19 www.epcc.ed.ac.uk/sungrid

Scheduling Algorithm

The hierarchical scheduler chooses a site for a

job according to the following criteria:
— Physical capability
 Sites which have no queues that can satisfy the job are rejected

— Load score

« Define a site's load score as the minimum load of its capable
gueues for a given job

o Sites with lower load are favoured
— Data proximity
e Sites 'closer' to their data sources are favoured

Weighting factors

— Can supply multipliers for load and data proximity with the
job

.0 ° Eg.sodata proximity can be ignored for compute ivrvl\;vewngr_i)vg_ égg%uk/sungrid

JOSH Implementation

One hiersched job submission is implemented as

three Grid Engine jobs at the compute site
— 1. PRE Job - pulls input data files to the compute site

— 2. MAIN Job - the user's original job script
— 3. POST Job - pushes output data files to their destinations and
cleans up

Separate jobs approach solve various issues

— Don't want a high performance queue clogged up with a big data
transfer task
« PRE and POST jobs can be run in dedicated data transfer queue
— Do want a terminated job to be cleaned up and partial output data

returned
« Terminating MAIN job releases POST iob

21 www.epcc.ed.ac.uk/sungrid

Compute Site

Grid service operations

Grid Services Container

— Call out to GE (and other) . .
JoshSiteService |~ gqsub-wv
executables canRun(...)
— Parse output (fiddly) jobStatus(...) » gstat/cacct
- loadScore...)
— Some more-specific GE dataProximityScore(...) [ping
commands would be handy

Globus 3 operations always run as container owner

— But job submission, termination etc. must run under the client
user's remote account

— Ensure correct privileges, prevent killing someone else's job etc.
— Workround is to use the GT3 Managed Job Service - bit ugly
— Allows a script to run under the client user's account

22 www.epcc.ed.ac.uk/sungrid

Pros

— Satisfies the five functionality goals

— Need only minor additions to existing GE job scripts

- Data requirement comments

— Remote administrators still have full control over their GEs
— Tries to make use of existing GE functionality eg. ‘can run’

cons

— Latency in decision making
— Not so much 'scheduling' as 'choosing'
— Grid Engine specific solution

23

www.epcc.ed.ac.uk/sungrid

Conclusions

Significant progress since last GE Workshop

— Learned a lot

— Focussed on achievable goal that will hopefully have some wider use
— Released various documents and the TOG software

Prototyping exercise proved valuable

— Developing TOG was a worthwhile and educational first step
— Already being used for ODD-Genes project, potentially others

Hierarchical scheduler implementation starting

— JOSH software should address the main TOG limitations
— Early adoption of Globus 3 is still a bit of a risk

Our interests at this GE Workshop

— GE developments, Globus 3 experiences, multi-site scheduling
— Anything to ease our final development phase!

24 www.epcc.ed.ac.uk/sungrid

