
Scheduling and Job Management using
Grid Engine on a Multi-Teraflop HPC

Craig Tierney

September 22-24, 2003
Regensburg, Germany

Forecast System Laboratory –
NOAA

Mission is to research and develop better
forecasting technologies; instrumentation,
modelling, and methods to incorporate both.
In 1999, 5 year, $15 million USD contract for new
supercomputing resources
High Performance Technologies Inc. (HPTi) was
chosen to deliver Linux cluster, Jet, as their HPC
system
First time that a Linux cluster was purchased
through competitive bid by the US government

High Performance Technologies
Inc.

Reston, Virginia USA Company
50 fastest growing companies in Virginia
Specialize in cutting edge technology

Linux HPC clusters (design, implementation,
programming)
Re-programmable computing (FPGA)
Deployable cluster computing
Large scale hardware/software integration
Enterprise Architecture

Jet History

Compute system was delivered in 3 phases

First phase, March 2000
276 Compaq XP1000s (667 Mhz, 512MB per
processor, Myrinet 1280)

Second phase, September 2001
Added 142 Dual API UP2000 (833 Mhz, 512
MB per processor, Myrinet 2000)

Jet History, Cont.

First 2 phases used OpenPBS

OpenPBS provided robust features to
provide batch queuing for a large cluster

Poor communication model and server
design resulted in poor stability and
scalability

The final system was to be 3-5x larger than
the initial systems, there was a concern that
OpenPBS would not scale to this size.

3rd Phase – Intel Jet

Compute nodes based on Intel Xeon processor
Better price and availability than Alpha systems

Better price/performance than Alpha

Better Linux support

Installed in 2 sections
128 nodes delivered in July 2002 (2.2 Ghz Xeon, 512
MB per CPU, Myrinet 2000 Fibre)

Initial XP1000 system removed

640 more nodes delivered in September 2002
All 768 nodes were put into production in November 2002.

3.337 Tflops, 8th fastest on Top500 list, Nov. 2002

FSL System Usage

Resources are divided between organizations.
40% Internal, 40% NCEP, 20% external users

Jobs can be classified as real-time or research.
Real-time jobs are run regularly and have time
constraints in which to complete. For many projects,
data are delivered offsite and have deadlines.
Large jobs and long run times are not the norm.
Average job is 8-64 cpus, 0.5-4 hours.
Must be able to perform system maintenance on
portions of the system while important real-time jobs
(RUC20, LAPS) still complete.

Batch Queuing System Needs

Besides stable, robust, redundant.....
Support multiple disconnected Myrinet
systems

hide details from the users

Schedule only 1 job per SMP node
User/account/class controls over

max cpus per job
max wallclock per job
max cpus running at one time
max jobs
queue accessibility

Batch Queuing System Needs,
Cont.

Control placement of rank 0 node (IO node),
mimic OpenPBS complex resource node
allocation (-lnodes=1:io+N:comp)

Overflow queue

Resource reservation

Compatibility with OpenPBS syntax

Why Grid Engine?

Stability, Reliability, Scalability

Features
Failover/shadow server

Parallel environment/MPI job support

Consumable resources

Multi-platform support

Open Source
Free (as in beer) was NOT the most important feature

Additional Features

Grid Engine did not support all features
needed

No batch system did (LSF, PBSPro)

Features were implemented in 3 pieces
Wrapper to qsub

Grid Engine pre-scheduler (sge_preschedd)

Patch to qstat

Qsub wrapper

Qsub wrapper was necessary to
Verify job maximums and queue access

Verify user membership in specified account for
system accounting

Translate OpenPBS syntax

SGE Prescheduler

Modify job parameters so only one job is
scheduled per node

Fit job on one of multiple disconnected
networks (separate Myrinet networks)

Release job only when account maximums
for user/account/class are not exceeded

IO node support

Pre-scheduler Configuration

Setup maps for compute nodes
map comp qcomp2 qcomp3 qcomp4 qcomp5
map comp1 qcomp1
map comp2 qcomp2
map comp3 qcomp3
map comp4 qcomp4
map comp5 qcomp5

Make mapping for PVFS
map pvfs qcomp3 qcomp4 qcomp5

Setup IO nodes
map io qio3 qio41 qio42
map io3 qio3
map io41 qio41
map io42 qio42

io qio3 g0128.q
io qio41 g0256.q
io qio42 g0257.q

IO Node support

Some nodes have faster IO connectivity (GigE) or
more memory

Several codes need rank 0 node to have additional
memory

Several codes with high IO requirements that do IO
through a single node

Using -masterq allows selection of the rank 0 node,
but not user friendly

User specifies special PE (io) and consumable
resource (-l io) to gain access to IO node

What about Maui?

Wasn't supported

Maui is a very powerful/robust scheduler, but
scheduling features weren't needed

All that is used is FIFO with priorities

Still needed the pre-scheduler to ensure 1 job per
node and overflow queue

Maui did not support max per user/account/class
resources

 Ok to submit jobs above maximums, just shouldn't run.

Qstat Patch

New feature to qstat (-c) which displays jobs
in a easier to read format when only parallel
environment jobs are run.
Patch written by James Vasak of HPTi.

Qstat Patch, Cont.

 Job-ID Jobname Username Account State Cpus Queue Time Time

 1033321 Mvkf84091011.NRII lili of_ciaqex r 16 qcomp2 22:31 24:00
 1036621 Mv1988070809.NNRP lili of_ciaqex r 16 qcomp2 10:30 24:00
 1037715 ccm3.10 shin eab r 16 qcomp2 05:45 08:00
 1037993 ccm3.10 shin of_crotc r 16 qcomp2 03:33 08:00
 1037994 ccm3.10 shin of_crotc r 16 qcomp2 03:33 08:00
 1037995 ccm3.10 shin of_crotc r 16 qcomp2 02:36 08:00
 1038001 ccm3.10 shin of_crotc r 16 qcomp4 03:32 08:00
 1038011 ccm3.10 shin of_eab r 16 qcomp4 03:30 08:00
 1038012 ccm3.10 shin of_eab r 16 qcomp4 03:30 08:00
 1038185 wrf harrop of_jetmgmt r 64 qcomp4 01:54 06:00
 1038191 wrf harrop of_jetmgmt r 64 qcomp4 01:52 06:00
 1038432 wrf harrop of_jetmgmt r 64 qcomp4 01:03 06:00
 1038659 Mv198904.NRII hengliu of_ciaqex r 32 qcomp3 00:32 24:00
 1038662 retro_wrf rt-aq of_ap-fc r 64 qcomp5 00:32 06:00
 1038772 amie19990406 ridley swr r 8 qcomp4 00:02 06:00
 1038773 amie19990407 ridley swr r 8 qcomp3 00:01 06:00
 1038783 amie19990417 ridley swr r 8 qcomp4 00:01 06:00
 1038784 amie19990418 ridley swr qw 8 comp --:-- 06:00
 1038785 amie19990419 ridley swr qw 8 comp --:-- 06:00
 1038789 amie19990423 ridley swr qw 8 comp --:-- 06:00
 1038790 amie19990424 ridley swr qw 8 comp --:-- 06:00

Grid Engine Configuration

Master/shadow fail-over configuration
server nodes mount $SGEROOT from NFS
server (/home)

All other nodes have local $SGEROOT.
Link to NFS server for act_qmaster for fail-
over support
All queues are the same
Each server runs sge_preschedd (supports
fail-over)

Intel Jet Statistics

772 nodes configured in SGE in six separate
parallel environments

5 systems connected with separate myrinet

1 system (4 nodes) used for visualization (no myrinet)

Running ~320 days since acceptance

~60 days since last failover
Servers haven't been a problem since kernel bug was
fixed approximately 6 months ago.

Approximately 1.1 million jobs run

Approximately 3400 jobs per day

Alpha Jet Statistics

142 nodes across two separate myrinet networks

Approx. 220 days since SGE conversion

Approx. 90 days since last failover

Approx. 410,000 jobs run

There had been issues with the SGE servers running
on Alpha. We thought it was more likely a
system/OS issue than SGE. The SGE servers were
moved to Intel nodes. No problems since.

Code Availability

Code is open source (BSD or public domain, not
GPL) still trying to work with government lawyers

qsub required rewrite
original script called OpenPBS code to translate syntax

Finished but needs more testing

Email ctierney@hpti.com for code/information, or
watch the gridengine-users list for information.

Todo

Add Qbank support (really an SGE issue)

Add reservations
Did this before for OpenPBS. Easy to do, hard to do
right.

Add checks in sge_preschedd to prevent 'accidental'
circumvention of system by users.

Add support for single thread jobs, ignore 1 job per
node rule for set of nodes.

Have Grid Engine just do all this automatically

Conclusion

Grid Engine has been used over the last year
to provide batch queuing facilities for two
HPC Linux clusters (Intel and Alpha) at FSL

It is a very robust, stable, and reliable base to
provide batch scheduling to users

