Grid Engine Advance Reservation

6.x advance reservation solutions

Andreas Haas Software Engineering Sun Grid Engine

6.x solutions roadmap

- 1.Flexible dispatch priority scheme combining new resource request based policy with existing policies
- 2.advance reservation to solve resource sharing job starvation problem
- 3.fix deficiencies with time/date based resource disposition
- 4.round-off new resource sharing capabilities with timely and aimed job preemption5.propagate job net dispatch priorities

NSU

Flexible priority scheme (RRDP)

- Normalized static urgency combining time dependent factors and RRDP
 - Per resource weighting factor deadline weighting factor Waiting time weighting factor
- Normalized Ticket Amount combines Enterprise Edition Ticket concepts share tree based policy functional policy override policy
- NSU/NTA linear combination finally used as priority value

Flexible priority scheme

Example: A 2 time parallel job with -l h_vmem=4G,mylic=0.5 resource requests that waits since 1 hour 25 minutes and must have been started after one hour to meet it's deadline. Only functional ticket policy is in use.

Slots=1	(implicit)	(2 times,	weight	10000)	=	20000.00
h_vmem=4G		(2 times,	weight	0.00005)	=	42949.00
mylic=0.5		(2 times,	weight	100000)	=	100000.00
waiting 1:25:10s (weight 11.50)				=	58765.00	
start latest in 1:0:0s (weight 18000000)					=	50000.00
static urgency resulting					=	271714.00
normalized static urgency (NSU) -					>	0.22
() stix +	133675 ft:	ix +	0 oti	х =	133675
normalized ticket priorty (NTA) -					>	0.51
NSU 0.22	(weight 0.75)	+ NTA 0.5	l (weigł	nt 0.25)	=	0.2925

Automated control of job dispatch order based on resource request

Advance Reservation/Backfilling: Resource utilization diagram

1. Register each assignment in a per resource utilization diagram

2. Use diagram information to decide about further assignments

Advance Reservation/Backfilling: Resource Utilization Tree (RUT)

Advance Reservation/Backfilling Multiple RUTs depending on set-up

Advance Reservation/Backfilling

Solution for time/date based resource disposition

- Jobs will no longer be dispatched in queues that close by calendar if job can't finish
- When queue is closed resource reservation is done for the time after

Timely and aimed job preemption

- Algorithm considers a job X be preempted by job Y, only if
 - job X blocks resources required by Y
 - X preemption is prerequisite to start Y earlier than w/o preemption
 - Job X would not finish soon
 - further conditions
- The preempting job Y is bound during certain time to the preempting assignment
- Preemption algorithm enhances base advance reservation algorithm (Lev)

Priority propagation in job nets

- For predecessor jobs the maximum priority of all successors jobs will be used as dispatch priority
- Priority propagation affects only dispatch order, but not priority used when priorities are compared to decide about preemption