
Update on EZ-Grid

Priya Raghunath

University of Houston

PI : Dr Barbara Chapman

chapman@cs.uh.edu

Outline

 Campus Grid at the University of Houston (UH)
 Functionality of EZ-Grid
 Design and Implementation of EZ-Grid
 Integrated Resource Information Service (IRIS)
 Adaptive Fault-tolerance
 Conclusion

Campus Grid Setup

 Major resource for computational science is Sun cluster at HPC
Center (HPCC)

– Large-scale computing, data intensive computing
– Shared file system
– Job submission is managed by SGEEE

 Other resources include Solaris clusters and Linux clusters
– Separately constructed,
– Individually owned by various departments such as Computer

Science, Geosciences and Math

Campus Grid

EZ Grid

Services

Computer

Science

Web Server

+ Servlet

Container

Web Browser

Web Browser

Secure http

Secure http

Secure

Geo-

Sciences

 AQM HPCC

Campus Grid

EZ-Grid

 High-level environment for job submission and resource usage
control

 Uses Globus tools for middleware
– Security, resource management, information services, data

transport etc.

 EZ-Grid Goals
– Developing generic brokerage systems for multi-site

computing
– Enforcing absolute control and priority for resource providers
– GUI for primary functions such as Job Submission, Job

Management and file handling
– Customizable User Profiles

Previous Architecture of EZ-Grid

 Client-Server Architecture
 EZ-Grid Client

– Provides functionalities such as:
 Logging into the grid (create grid proxy), GUI, Brokering

tools to assist in scheduling of user jobs

 EZ-Grid Server
– Provides functionalities such as :

 Management of remote resources
 Usage Control of the resources by enforcing owners

policies
 Job Submission

Limitations of Client-Server
EZ-Grid Model

 Difficult to deploy
– Needs to be installed on each of the resource from

which user needs to access.

 Lack of modularization
– Client side of the client-server system includes both

the GUI and the business logic
 Hard to maintain

– Client software maintenance becomes harder with
distributed clients

New Architecture of EZ-Grid

 Highly Modular
– Presentation layer and business logic are separated

 Enhanced Web-based portal
 Convenient, ubiquitous and high-level access to the grid
 Model-View-Controller (MVC) as the design pattern

– Separate the application logic (model) from the way it is
represented to the user (view)

– Matches user actions with appropriate model
– Uses Java Server Technology: JSP + Servlets + Struts web

framework

 Struts is a framework based on JSP Model 2

JSP Model 2 Design (MVC)

EZ-Grid Architecture

EZ-Grid Design

 Presentation layer
– HTML/JSP web pages containing customizable GUI to provide

users with convenient and useful graphical interfaces

 Web application service layer
– Uses struts framework to organize/model the generic web

application services in the standard MVC paradigm

 Business Logic
– The code is encapsulated as Java beans components

 Grid Service Interface Layer
 Database Layer

Driving Application-Air Quality
Modeling

Air quality initiative with federal funds
 Work to model ozone problems in Greater Houston area
 Assess strategies for compliance with ozone standards

by 2007
 Challenges

– Time critical results
– Different components execute on heterogeneous

environments
– Interaction between components
– Reliable execution

Development Stages of EZ-Grid

 Stage 1
– Basic functionalities such as authentication, maintenance of

user profile and job profiles, file handling and job executions

 Stage 2
– Maintenance of Data archives, resource information (static

and dynamic), resource brokerage and precise usage control

 Stage 3
– Fault tolerance and project management functions

EZ-Grid User Interface

Integrated Resource Information Service (IRIS)

 Estimates the queue wait time a user could
experience based on the number of nodes desired

 Aids the user in node selection
 Information updated in real time
 Profiles every user based on past usage. Helps users

whose jobs have consistent execution times
 Job Turnaround Time: Queue Wait Time + Execution

Time
 The IRIS backend database is used for storing the

relevant information. Useful for grid administration and
monitoring.

IRIS Architecture

Web / Command Line Based
 Reporting Interface

Resource Management Systems (SGEEE etc.)

Grid Resources

IRIS Controller

Database

Database Interface

Heartbeat Monitor Information Extractor

User Interface

1

3

4 5 6

2

IRIS Sample Output

Select * from USER where Owner = ‘archit’;

Select Day, count(*) from JOB group by Day;
Day count(*)
Fri 1746
Mon 1768
Sat 926
Sun 891
Thu 1674
Tue 1362
Wed 1714

Select Wait, Date, Time from PROBE
where Num_Nodes=6;

3157 , Fri 28 Jun 2003, 18:54:57

IRIS1111363835957.4916386.441444Archit

ToolMin Exec
Time

Max
Exec
Time

Avg Wait
Time

Avg Exec
Time

Num of
Jobs

Owner

Current Techniques for providing
Fault Tolerance

 Checkpointing by saving the entire application image
consumes time and disk space thereby affecting
performance

 Some solutions have benefit of saving only the
minimal state needed to recover however the degree
of application fault-tolerance is usually fixed

 High degree of fault-tolerance hurts performance
even if resources is very stable

 More recent trends are in the area of reconfigurable
applications

Proposed Solution

 Adaptive fault-tolerance balanced with
performance and resource stability

 Reconfigurable execution adapted to the
changing computation power, such as node
addition, failure, network bandwidth change, etc

Proposed Solution

 Reconfigurable MPI with application-level checkpointing
programming

 Run-time systems, providing resource and application
monitoring, and

 Performance model to decide run-time balance
– To guide programmer to setup different degrees of fault-tolerance

in programs
– To guide run-time systems to decide the best balance between

performance, resource stability and fault-tolerance

Proposed Solution

Application
Program

Fault-tolerance degree

Resource
Management

Systems

Application/Job
Management

Systems

Scheduling

EE

EE

EE

EE

EE5

ES1

ES2

ES3

ES4

ES0

EE3

EEEE1

EEEE2

EEEE2

EE5EE5EE4

Levels of checkpoints

Performance Requirement

Resource Stability

Application
performance

monitoring, failure
detection

Application
Execution

Reconfigured
execution
scheduling

Executed
Checkpoint

Non-executed
Checkpoint

Resource Monitoring,
failure detection

Performance
Model

Reconfigurable
MPI Application

Run-time
Systems

Conclusion

 Grids need an convenient interface in order to allow
easy access to grid services

 EZ-Grid is taking efforts in that direction
 Moving towards OGSA Compliance
 Grid Engine software provides a powerful tool for

building campus grids such as the one at UH
 Investigating general framework for Policy
 Fault-tolerance without compromising on performance

is an important need for grids

